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Abstract

Estimating changes in camera parameters, such as motion, focal length and exposure time over a single frame or sequence
of frames is an integral part of many computer vision applications. Rapid changes in these parameters often cause motion
blur to be present in an image, which can make traditional methods of feature identification and tracking difficult. In
this work we describe a method for tracking changes in two camera intrinsic parameters - shutter angle and scale changes
brought about by changes in focal length. We also provide a method for estimating the expected accuracy of the results
obtained using these methods and evaluate how the technique performs on images with a low depth of field, and therefore
likely to contain blur other than that brought about by motion.

1. Introduction

Estimating motion of a camera system, both in terms
of extrinsic (camera movement relative to the world co-
ordinate system) and intrinsic camera changes (such as
changes in focal length) is an important aspect of many
computer vision applications. Accurate estimation of these
changes throughout a film sequence is an essential part
of the Visual Effects (VFX) process, as without this in-
formation, computer generated assets, such as characters,
scenery and effects, cannot be applied convincingly to live-
action footage. Often, in order to determine changes in the
camera parameters, it is necessary to track individual fea-
ture points over two or more frames after filming has taken
place, or use additional camera mounted hardware such as
a motion capture rig, inertial measurement devices, and
other devices for tracking physical changes to the lens pa-
rameters. Commonly, the process of determining changes
in camera parameters after filming is referred to as match-
moving. This is a process that uses structure-from-motion
computer vision techniques to estimate both camera mo-
tion and 3D scene structure using corresponding feature
points over multiple frames [13, p. 207]. This process
can often be time-consuming, and require the input of a
skilled operator in order to produce an accurate camera
track from even automatically detected and matched fea-
ture points. In the case of using additional hardware, this
presents challenges such as gaining acceptance on set for
installation, and the additional expense of equipment and
operation. There are also often many situations where
such equipment would be impractical - such as outdoors
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or at sea, due to the reliance on additional infrastructure.
However, recent developments in electromechanical sen-
sors has allowed for the manufacture of gyroscopes and
accelerometers that are both low cost and small. These
devices are now starting to be included within cameras
and can easily be mounted to them in order to provide in-
formation about their motion during filming. Examples of
applications of such camera mounted devices range from
assisting determining scene geometry [11] to correcting for
distortions introduced by motion and camera rolling shut-
ter [5]. One of the most significant challenges with us-
ing inertial measurement sensors to measure motion of the
camera is that only changes in acceleration or rotational
velocity are recorded. This can lead to significant errors in
determining absolute position by integrating this data [12],
and as such are rarely suitable for tracking camera motion
when used alone. Devices which track physical changes in
lens parameters are now commonly used in production en-
vironments and have gained acceptance across the indus-
try - however they must be accurately synchronised to the
video captured by the camera. Whilst this is now a quick
process, occasionally it may not be completed correctly (if
at all) for each shot, and manual alignment of the data in
post-production is a time consuming and hence expensive
task.

Accurate feature tracking is a reliable method of de-
termining accurate camera motion estimations, and is an
active area of research. However, there are several cases
where it is difficult to get an accurate track, most no-
ticeably when there is a fast unpredictable motion of the
camera, which also often leads to a considerable amount
of motion blur being present in a frame, making features
undetectable. Another common method for determining
camera movements is to make use of a method known as
‘Optical Flow’ across an image. In this process, a dense
correspondence for each pixel across two frames is calcu-
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lated. Assuming that there are a sufficient number of sta-
tionary objects in the scene, the camera’s movement can
be calculated using this correspondence information. Sim-
ilarly to automatic feature detection and matching, the
process of calculating the optical flow across frames also
suffers from degradation in the presence of large quantities
of motion blur.

In [17], the authors present a method for determin-
ing dense optical flow in the presence of spatially-varying
motion blur. This method produces good results, how-
ever calculating optical flow over an entire image can be
a computationally expensive process. In [6], the authors
present a method of determining in real-time and using a
single motion-blurred frame, an estimate for camera ro-
tation - using characteristics of the motion blur directly,
and without selecting or matching any features from the
image.

In our previous work [1], we used motion blur induced
onto an image by changes in focal length and camera ro-
tation to track changes in two camera intrinsic parameters
- namely focal length and shutter angle. We used accu-
rate hardware tracking of changes in camera parameters
(the focal length change of a lens and camera rotation) to
gather ground truth datasets and validate our algorithms.
We also demonstrated how, in a situation where unsyn-
chronised data from certain sensors was available along-
side blurred footage, the blur patterns from frames in this
footage could be used to accurately synchronise the exter-
nal data with camera frames. One of the main limitations
of the approach presented in [1] is that in order for an accu-
rate estimate of focal length to be produced, there must be
a sufficient amount of motion-induced blur present in the
frame, along with sufficient visual texture (in this case,
sharp edges). In the following sections, we give an ex-
panded description of our method as presented in [1] for
determining shutter angle and scale change brought about
by focal length change. In addition to this, we present
an extension to this method for validating the accuracy of
such results across two new datasets in differing conditions.
We also investigate the effects of a shallow depth-of field
(and hence images likely to contain a significant amount
of blur irrespective of motion) on both our method.

2. Background

Our main motivation for this work is to improve the
process of ‘Matchmoving’ for use in Visual Effects. In par-
ticular, we are interested in accurately estimating changes
in camera parameters automatically and from scenes that
would cause traditional structure from motion techniques
based upon feature detection and matching to fail. Motion
blur is often present in footage, and it is not uncommon for
it to be considered a desirable artistic effect by directors
in order to convey a sense of fast movement to the viewer
[4]. This can often present challenges in determining an
accurate camera track [13, pp140-143], as many current
techniques for feature identification and matching rely on

there being sharp corners or changes in image intensity
being visible. Motion blur severely reduces the occurrence
of these in an image. However, recent work has looked
at using the characteristics of induced motion blur alone
to determine parameters of a scene in order to avoid this
limitation.

Using Motion blur directly to determine parameters
of a scene is an area of current computer vision research.
[9] presents a method of determining speed of a moving
vehicle from a blurred image, whilst then using this infor-
mation to de-blur the resulting image. Other methods,
such as the one presented by Rekleitis [14] use the di-
rection and magnitude of motion blur in the process of
estimating optical flow in an image. Later work, in [17],
parameterises each frame as a function of both pixel move-
ment and motion-blur. In [17], the authors determine the
derivative of the blurred frame with respect to both the
motion and the blur, where the blur itself is a function
of motion. Furthermore, if the exposure time is known as
a fraction of the frame (shutter angle), the result can be
further optimised. Recent work in [7] makes use of data
captured from a 3D pose and position tracker attached to
the camera to aid in the calculation of optical flow in im-
ages affected by motion blur. As the level of motion blur in
an image is typically directly related to the exposure time
of the frame, [10] and [16] use a method with a hybrid
camera capturing both high and low frame-rate images of
the same scene to correct images exhibiting motion blur.

Presented by Klein and Drummond in [6] is a method
for determining the rotation of a camera during a single-
frame exposure resulting in motion blur. In this work,
the axis of rotation is derived by selecting a point through
which the most normals to the edgels at a set of ‘edgel’
(points along an edge) points coincide. This algorithm
builds on the observation that areas of motion blur will
typically form edges in the image. Figure 1 shows a syn-
thetic animation that has undergone motion blur whilst
the virtual camera has been rotated, and the results of
this image having undergone Canny edge detection.

In the case of the scene in figure 1, the algorithm de-
scribed in [6] will estimate the centre of rotation to be at
the centre of the image plane - the Z axis. In order to
handle rotations around the X and Y axis, the normal
line to the edge at each edgel site is expressed as the inter-
section of the image plane with a plane passing through
the origin and and edgel site. Once the centre for rotation
has been accurately determined using RANSAC (and opti-
mised using a Levenberg-Marquardt based algorithm), the
magnitude of rotation can be determined from analysing
the blur along its direction, with the intensity of pixels in
the image being sampled in concentric circles centred at
the estimated axis of rotation. In [6], rotation magnitude
is estimated under the assumption that the blur length
cannot exceed the shortest intensity ramp produced by an
intensity step in the scene (i.e., the least blurred feature).
Under the further assumption that the largest intensity
step in each scene will span approximately the same in-
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Figure 1: Images Blurred from Camera Rotation and Focal Length Changes with Resulting Canny Edge Detection

tensity increase, the gradient of the steepest ramp to span
this increase will therefore be inversely proportional to the
length of the motion blur, and thus the magnitude of ro-
tation from the camera. Their work highlights a number
of important limitations in using motion blur to determine
changes in camera parameters, most notably that from a
single frame alone, it is not possible to determine the di-
rection (or sign) of rotation. For this reason, it is only
possible to compare the results of this algorithm with nor-
malised values of rotation from a rate-gyroscope or other
method for determining ground truth.

2.1. Intrinsic Parameters

The intrinsic parameters we consider in this work are
focal length and shutter angle.

If the focal length of a lens were to change whilst the
sensor or film is exposed, it could be expected that the
image will experience motion blur in a similar fashion to
those described in the previous section due to changes in
the field of view. An example of such an image is also
shown in Fig. 1. Although the entire image has been
scaled by a single value, it is apparent that different parts
of the image are blurred by differing amounts, specifically
- towards the centre of the image edges will still appear
sharper, despite being scaled, than towards the outside. It
is also clear that the ‘edges’ introduced by this blur con-
verge towards the centre of the image, in a similar fashion
to a translation of the camera originating from the centre
of the image.

When a frame is captured, the image sensor, or film,
is exposed for a short amount of time. Often, this amount
of time is known and controlled by the camera operator
- however there are occasions where this would be an un-
known value, such as in cameras with an automatically
controlled exposure. Fig. 2 shows two extracts from two
video sequences of a ball falling under gravity. The left
hand panel is a frame from a sequence shot with an ex-
posure time of 1/500th of a second, whilst the right hand
panel shows a similar scene captured with an exposure
time of 1/100th of a second. In both frames, the ball falls
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Figure 2: Illustration of Shutter Angle and Motion Blur (25fps)

at an identical speed, and in both cases the frame rate
was set to 25 frames per second. Therefore, the left frame
would be exposed for =+ %1—5 = 0.05 of the frame time and
the right hand frame for 55 + % = 0.25. It can be seen
from Fig. 2, the frame with the longer exposure time as
a fraction of the frame exhibits the largest amount of mo-
tion blur. Historically, this fraction of time for which the
frame is exposed is determined by the shutter angle. This
is so called as in cameras with mechanical shutters con-
sisting of a rotating disk with an adjustable sector with
which to expose the film, the shutter angle referred to
the angle of opening of this sector. In the example from
Fig. 2, the shutter angle of the second frame would be
360° x 0.25 = 90°, and a frame for which the exposure
time is half the frame time would be 180°. Throughout
this work, for simplicity, we refer to the values for shutter
angles as fractions of the frame time.

3. Method

3.1. Measuring Focal Length Change from a Single Frame

In the case of a single motion-blurred frame undergoing
rotation, we use Klein and Drummond‘s original method
to calculate the rotation, R around a 3D axis for that
frame. We also extend this method to determine a scale
change brought about by a change in focal length without
other motion, with the principal point of the lens being at
the centre of the image.



As shown in Fig. 1, the change in focal length (assum-
ing the camera is not rotating or translating) adds motion
blur to the image in a fashion similar to a translation to-
wards the principal point of the image plane. Unlike the
method used by Klein & Drummond to estimate for ro-
tation, there is no need to determine the centre of the
transformation as we can assume that the direction of the
blur will always be towards the principal point of the im-
age plane. Therefore, in order to determine the magnitude
of blur, the intensity I of the image along several radial
lines L, is sampled from the edge of the image inwards
(Fig 3). The number of radial lines depends on the size
of the image, and are sampled starting at locations on the
edges of the image spaced 10 pixels apart. Therefore, for
a 640 x 480 image, there would be 2 x 64 4+ 2 x 48 lines
sampled. This profile is then searched for the first occur-
rence of an intensity step change greater than a threshold
value - and the length of this change (and image position
of the start and end) is recorded. In a similar fasion to
the authors of [6], we choose a threshold value in order
to avoid under-estimating the length of the blur, and only
consider ramps which span a large intensity change (over
50 grayscale levels) in order to detect large isolated in-
tensity steps (representing edges) in the image. The first
occurrence of the step-change is selected because edges are
expected to be less blurred towards the centre of the image,
and hence the shortest intensity ramp will always corre-
spond to a minimally blurred edge towards the centre of
the centre of the image. Unless the scale change is very
large, the likelihood is that this edge towards the centre of
the image will not have been affected by the scale change
or motion blur, and will therefore represent a scale change
of zero, regardless of the true change in scale. As the origin
of the scale change will be the centre of the image Eqn.1
describes this relationship between an image point u and
the point v’ after a change in focal length f: Af.

X
w=Iz
o= (f+ AN 1)
WL A
=1+

Where X is a scene point of distance Z from the front
nodal point of a lens.

Figure 3 shows the location of a blur region as detected
by this algorithm in a synthetically blurred image, and Fig.
4 the locations of all blur regions over the image.

After a pair of points has been obtained for each ra-
dial line, a RANSAC based algorithm is used in order to
determine the geometric transformation between the sets
of points. In this process, the start and end points of the
maximum gradient ramps from the radial search lines are
represented as their respective image coordinates. The ge-
ometric transform brought about by a change in scale is
then estimated to produce an estimate of the scale trans-
form, using the points identified at each radial line. To

Figure 3: A line sample location (left) and profile (right). The peak
gradient has been highlighted and location marked on the image.

achieve this, we adapt the standard RANSAC algorithm
to take into account the observation that measuring the
magnitude of motion blur by searching for the maximal
gradient ramp will always produce an overestimate for the
blur magnitude. This would be because even in the case
where there is no blur, the sharpest edge might be sev-
eral pixels in extent, and in practice, in an image with
moderate motion blur, will extend several pixels beyond
the blurred region. Because of this, the error metric used
in the RANSAC based geometric estimation is weighted
to apply a higher penalty to estimations that produce an
under-estimate of the scale magnitude. This is done by
changing the model of our system in order to achieve a
result that matches with the assumption that measuring
the length of a blurred edge will result in an over-estimate
of the true scale change.

In this process, instead of finding a hypothesis to max-
imise the number of start and end points for blur that
comply with ((r' — r)? < €2) where 7’ and r are the mea-
sured and predicted radial displacements, we maximise
S((r" — (r +€))? < €%). By using this method, in or-
der to be considered an inlier, v’ must be in the range r
to r + 2¢, as opposed to r — € < r’ < 1+ € as in a tradi-
tional RANSAC procedure. The upper limit of this range:
r 4 2¢ was chosen as a limit arbitrarily and produces good
results, however it should be noted that other values, or
the use of methods such as Least Median Square estimate,
or MLESAC could be used to determine this value, al-
though these are not evaluated in this work. This method
provides an accurate estimate of the transformation be-
tween the points - whilst also rejecting outliers in the sets
of points.

As described in Section 2.1, the shutter of the camera
will only be open for a fraction of the frame time depending
on the shutter angle. The estimate for scale change from
motion blur will only take into account the time for which
the shutter was open, and not the overall frame.

3.2. Measuring Rotation Between Two Frames

The optical flow of two motion-blurred images can be
calculated using the baseline method described in [17].
Then, a set of feature points in the first frame are sampled
using [15], and their flow vectors used to calculate corre-
sponding points. As it is expected that there will be some
outliers, we use a RANSAC algorithm similar to that de-
scribed in Klein & Drummond to determine a consensus



Figure 4: Blur length estimation along all radial lines

set of matching points, in order to determine rotation. As-
suming a correct pair of point matches, p; and po, where
p = [x,y,1]T is a homogeneous point in the image coordi-
nate system, the line joining these points will be described
as L, = |§i§§§\' As p; and P, are homogeneous coordi-
nates, the line L = (a,b, )’ for which a point p = (z,y, 2)
lies on is specified by the equation ax + by + cz = 0. As-
suming a further pair of correct point matches is available,
and the normal line to these can be calculated, the point of
intersection of these two normal lines (L; and Lo) should
then be the centre of rotation. This is where using the
homogeneous coordinate system is useful, as if the camera
is rotating around a point not in the image plane (for ex-
ample, its = or y) axes, the centre of rotation can still be
represented in the image coordinate system. In this case,
the two normal lines from point estimates would cross at
infinity, a point which can be represented in homogeneous
image coordinates as p = (z,y,0)7.

Candidate point pairs and the best estimate for rota-
tion are selected using RANSAC. In this process, a pair of
candidate points and their matches are selected, and the
centre for rotation, C is calculated based on the method
described above. The connecting line for every other point
match is calculated, and the normal at the midpoint to this
line Ly, along with the line Lo from this midpoint to the
centre estimate, is calculated for each point pair. This is
illustrated in Fig. 5. The angle between the line Ly and
L¢, 0, is calculated for each point pair - and capped at a
threshold value e. In this work the value for € is small, at
5 degrees, however should be varied by the user depend-
ing on the amount of candidate points expected (which
can depend on the visual texture of a scene) and expected
rotation magnitude.

The centre estimate producing the lowest sum of these
angles is then selected as the rotation centre. This point is
then normalised, and its coordinates C' = (z,vy, 2)T treated
as a 3D point. The Least Mean Squared value for the angle
between this point and the centre points between inlying
point match pairs is then treated as the frame-to-frame
rotation magnitude. Results obtained using this method
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Figure 5: Illustration of Estimating the Centre of Rotation from
Point Match Pair Candidates

alongside Klein and Drummond’s single frame method -
using synthetic and real image sets are shown in the fol-
lowing sections.

8.8. Determining Shutter Angle

By combining the results for rotation obtained from a
single frame, and those from a pair of frames - it should
be possible to calculate the exposure time of the frame as
a fraction of the framerate, simply by dividing the motion
magnitude obtained from blur by that of the frame-to-
frame track. This calculation could further be simplified
by using just the geometric distance between points iden-
tified by searching along the radial or circular profiles. It
is envisaged that performing the extra stages of rotation
estimation will provide a more robust estimation for shut-
ter angle. This is because both methods for determining
rotation include the rejection of outliers as an important
stage in the calculation of the magnitude.

8.4. Determining Amount of Blur in an Image

It is envisaged that the methods presented previously
will only work well if there is a sufficient amount of blur
from motion present in the image. This is a limitation also
highlighted by the authors of [6]. In order to evaluate the
effectiveness of the method for accurately determining the
scale change of different magnitudes across different sets of
images, we propose a method for quantifying the amount
of blur present across the whole image. Furthermore, it
is proposed that this accuracy measure could be used to
correct estimates over further footage of the same scene,
given a ground truth for some initial data. This could
be useful in such a situation where, for example, exter-
nal hardware was being used to record the change in lens
barrel and hence focal length position - and this hardware
becomes unsynchronised or uncalibrated throughout the
shot. Such situations are not uncommon and can require
a large amount of work post-production to rectify. We
would also typically expect the methods described here to



be applied on a sequence of frames, some of which will not
contain any change in focal length or rotation. As part
of the process for estimating shutter angle from rotation
(a change in an extrinsic parameter), it is possible to ac-
curately deduce cases for which rotation and hence blur
is zero using the optical flow method which must be per-
formed on each pair of frames. As previously stated, it
is not possible to identify an blurred edge of length zero,
so in the case of zero focal length change - the proposed
algorithm will always return a result greater than zero.
Classifying the blur characteristics of a frame with zero
scale change would therefore allow for automatic identifi-
cation of these frames

In the case of focal length from a single frame the fol-
lowing method is used to determine the amount of blur
present in an image. We define blur energy ratio rpj, in
an image as the average ratio between the energy of a pro-
file of pixel intensities along a set of radial lines across an
image, and the average energy of the same set of sample
lines of the same image after having undergone a gaussian
blur operation. In this work we used a Gaussian kernel
w=[3-%1%a1 %~ %] where a = 0.375, and in order
to produce a more significant result for the difference in
energies across a radial profile, the difference in energies
across the same radial line from the top and the 3rd level
of the Gaussian reduction pyramid is calculated. Similarly
to the method used for determining scale change from mo-
tion blur, radial lines are sampled from the outside edges
of the image inward - initialised at 10 pixel intervals along
the edges of the image. The reasoning behind this is that
an image that contains motion blur will have a lower en-
ergy (lower frequency of changes in intensity) than a sharp,
non-motion blurred image - as described in earlier sections.
However the ratio of energy between this motion blurred
image and its gaussian blurred equivalent should be larger
than the ratio of profile energy between a non motion-
blurred image and its blurred equivalent. This is illus-
trated in Figure 6 and Figure 7, where it can be seen that
for a non-motion blurred original image, there is a much
higher frequency (and hence greater energy) of intensity
change for the original image than the gaussian-blurred
equivalent image. For the profiles shown in Figure 7, the
frequency of changes in intensity for the original image is
much closer to that of the Gaussian-blurred equivalent.
We define energy as the sum of squared values of image
intensity along the profile line, and sample along multiple
profile lines, taking the mean ratio of energies across all
lines over the image pair to be value for the difference in
image energy.
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4. Results

Presented in this section are the results obtained from a
variety of tests, both on synthetic and real footage. In the
case of synthetic images, a single static photograph had an
animated scale change applied using the Nuke compositing
tool (a 2D image manipulation package well suited to ap-
plying transforms, filters and animation and used widely
in the post production industry). Motion blur for this
set of images was then simulated for the specified shutter
opening time at each frame.

Initially results are shown as in [1] for the raw out-
put produced from running the algorithms for estimating
changes in intrinsic values on a sequence of frames without
first considering the amount of blur present in each frame
of the sequence using the method described in Sec. 3.4.

For real image sequences, an external electro-mechanical
zoom encoder was attached to the lens on the camera used
to capture the footage. This is a proprietary device that
uses a geared rotary encoder meshed with the zoom ring
on the lens barrel to track change in rotational position
of the ring. After a simple calibration and synchronisa-
tion, this data can be used to infer the focal length at a
particular frame, independently from the image captured
by the camera. Such devices are commonly used through-
out the visual effects and post-production process as they
provide a reliable method of measuring changes in camera
parameters.

For the production of ground-truth values for camera
rotation, the camera was rigidly attached to a high-end
rate-gyro capable of determining rotation up to a speed
175°/sec with a standard error of 0.0005°/sec/v/Hz. [12]
presents a comprehensive description of the specifications
and sources of error in inertial measurement systems.

The values obtained from both the ground truth and
original estimates of a real data-set for change in focal
length are then used to calculate the expected error factor
for each range of blur magnitude present in the frame. The
ground truth magnitude for scale change is also used to
validate that our measurement of blur present in a frame
is effective. These error metrics are then used to attempt
to produce a more accurate estimate of scale change from
blur, using new footage of the same scene.
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Figure 8: Results for Estimating Change in Focal Length from Blur with a Synthetic Data Set
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Rotation with Gyroscope to Validate Rotation from Optical Flow Calculation (Poster)
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This dataset was produced with a rigid camera-gyroscope rig in order to validate that the estimates produced by the
optical flow algorithm for rotation in the presence of motion-blur were accurate when the rotation magnitude and axis
of the camera is arbitrary and otherwise unknown.

Figure 10: Comparison of Results from Optical Flow based Rotation Estimation and Gyroscope Readings
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Figure 12: Change in Focal Length Estimates from a Real Dataset (‘Zoom Boxes’ Sequence). Ideally, the green and red lines in the left-hand
chart should align, and the scatter plot should tend to an x = y line.
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4.1. Synthetic Tests

To test the algorithms against a synthetic and known
ground truth for a change in focal length, shutter angle,
and rotation, the Nuke compositing tool was used to create
an animated series of frames from a single image.

4.1.1. Focal length change from a Single Frame

Results for the motion estimates for a set of rotation
changes and changes in focal length are shown here. In
both cases, as it is not possible to determine the direc-
tion of motion from a single frame, all of the values for
both focal length change and rotation are absolute values.
Fig. 8 shows a plot for results obtained for determining
the change in scale induced by a change in focal length.
In chart (i) of Fig. 8, the dashed blue and red lines should
ideally be identical, and in the scatter chart in chart (i)
of Fig. 8, the points should lie in an z = y line. In this
result, chart (i) of Fig. 8 also shows the change in scale cor-
rected for the known shutter exposure time of the virtual
camera, which should equal the frame to frame estimate
of scale (the true scale in this case). For most frames, it
can be seen that the raw estimation from blur overesti-
mates the true scale value. This is to be expected, as if
there is zero blur, the sharpest edge in the blur profile to
be found (as described in Sec. 3) will still be at least one
pixel (in practice on real photographs, this will likely be
more) - which will therefore always result in some scale
change being estimated. This is the effect that we aim to
compensate for using the blur-information obtained using
the method described in Sec. 3.4 to estimate the expected
error of results of a scene, and the results for this when
applied to a real scene are shown in Sec. 4.3.

4.1.2. Shutter Angle and Rotation Estimation from a pair
of Frames

Figure 9 shows results from a synthetic sequence under-
going a series of varying rotations and with an animated
shutter angle. Chart (i) of Fig. 9 shows the estimates
for the magnitude of motion blur obtained from both the
pair of frame method and single frame Klein and Drum-
mond method, the latter being un-corrected for the known
shutter exposure time. From this result it can be seen
that in many cases where there is only a small amount of
rotation, the single frame method from motion blur will
over-estimate the amount of rotation that has occurred.
However, the blur based system appears to consistently
underestimate the value for rotation when there is a sig-
nificant change in rotation, and this behaviour is to be
expected - as detailed in Sec. 3.1, as the motion from blur
will only represent a fraction of the frame time, whereas
the frame to frame track will represent the full movement
between frames.

Due to the noise in measuring rotation from blur, the
resulting estimate for shutter angle is smoothed using a
moving average filter (with a span of 4 frames) across the
frame-set. This filtering is necessary because whilst the
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RANSAC algorithm described in Sec. 3.1 is able to reduce
the effect of outlying estimates for rotation of the frame,
certain conditions (further described in Sec. 5) will always
produce incorrect results. The most significant source of
error occurs when the magnitude of blur in the image is
not sufficient for the accurate detection of the true change
in focal length or rotation. By filtering these estimates we
are able to reduce the impact of these errors whilst still
maintaining an acceptable level of accuracy over periods
where there is only a small amount of rotation present in
the frame. A moving average filter was selected as this
is a simple to implement filter that will filter out high-
frequency changes in the estimate for shutter angle. We do
not expect the shutter angle to change at every frame, so
this method allows for a single step change in shutter angle
to be easily identified, whilst filtering the noisy calculation.
Furthermore, outlying estimates that predict the shutter
angle to be 1 or greater (i.e. the shutter was open longer
than the frame time) are also automatically discarded.

4.2. Real Footage

The algorithms described in this work were tested over
a set of real images captured by a Canon 700D SLR Cam-
era along with a 70-200mm lens. The scenes shot were in-
doors and in good lighting conditions, and outdoors with
natural light and some movement of objects in the scene
(for example, trees moving in the wind and pedestrians
walking through the frame). For the case of focal length
estimation, a rotary encoder was attached to the lens bar-
rel to track changes in rotation of the zoom wheel, and
hence changes in the focal length. Each sequence consists
of approximately 300 frames. In the case of rotation - the
camera was rotated quickly and manually around an axis
at various speeds and magnitudes, in order to produce a se-
quence that would exhibit large amounts of motion blur.
Likewise, for changes in focal length, the zoom was also
changed quickly and at varying speeds and magnitudes
whilst filming. In all cases, the shutter speed was set to
a constant 1/30th of a second - apart from the Chairs
dataset where it was changed to 1/60th of a second after
approximately 160 frames.

4.2.1. Shutter Angle and Rotation Estimation from a Pair
of Frames

In order to validate the results produced using the 2
frame optical flow based method for determining camera
rotation, the estimates obtained using this method on real
footage were compared with the results obtained from a
gyroscope rigidly attached to the camera during rotations
around an axis. Figure 10 shows the results of this test.
Ideally, the line plot for the angle estimated from optical
flow against the gyroscope data should be identical, and
the scatter plot for this data tend to an x = y line.

Shown in Fig. 11 are the results obtained from rotat-
ing a camera around an axis over various magnitudes, and
estimating rotation from both optical flow and blur. Dur-
ing shooting, the camera‘s shutter speed was changed from



1/30th of a second (0.83 of a frame at 25fps) to 1/60th of
a second (0.415 of a frame at 25fps). Figure 11 also shows
the estimated shutter angle as a fraction of the frame from
the difference in estimations. As with the results from syn-
thetic sequences, the value for shutter angle was calculated
from a smoothed estimate for rotation from blur at each
location above a threshold value.

4.2.2. Focal Length Change

Presented in Figures 12, 13 and 14 are the results for
determining a change in focal length using a single frame
using the method described previously. As with rota-
tion from blur, the single frame method of determining
focal length change is unable to determine the direction
of the change, hence data from the zoom encoder (taken
as the ground truth) is converted to an absolute change
in value. The initial indoor footage - ‘Zoom Boxes’ se-
quence in Fig. 12 was shot with good lighting conditions,
however it can be seen that there is a smaller amount vi-
sual texture in the image, such as sharp edges and high
contrast, when compared to the outdoor ‘Building’ se-
quence in Fig. 13. The result set for the ‘Building’ se-
quence (Fig. 13) is clearly of a higher quality, and would
suggest that the presence of good visual texture and a
large number of sharp edges in the scene is important for
achieving accurate results. Fig. 14 shows the results of the
estimation method for images with a low depth of field.
It can be seen from this that at certain peaks of the scale
change magnitude there is a large over-estimation for the
amount of focal length change present. This might suggest
that at a high scale change magnitude the algorithm is less
accurate for determining the true scale change when there
is a large amount of blur present from the low depth of
field, which is independent of the scale change, and blur
introduced by the scale change.

4.2.8. Alignment of Sensor Data with Video Footage
During capture of real data using both the gyroscope
and zoom encoder equipment, it was necessary to syn-
chronise the recording equipment with the video frames.
This is performed by showing the camera a ‘digislate’ - a
device which displays a time-code which refreshes at the
specified framerate at the start of recording, and synchro-
nising electronically this time-code with the data record-
ing equipment. When the video is retrieved, the frames
are manually inspected to read the time-code displayed on
the device and correlate with the frame number of the se-
quence. Whilst this is a straightforward process to perform
in a controlled environment, it is not practical in every
shooting environment, e.g. if shooting from an aircraft. In
such cases, manually aligning the data to the frame can
be a difficult process. If an estimate can be found from
frames with motion blur present as to the change in ei-
ther zoom or rotation, then it could be used to assist in
the alignment of the data in the case of failed synchroni-
sation. One such way of achieving this would be the use
of cross-correlation over both signals (estimate from blur
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and ground truth from sensors). Shown in figure 15 are the
results from using the method of focal length estimation
described in this work to align data from the zoom encoder
sensor, compared to the actual synchronised values. In this
case, the zoom encoder started recording positions before
the camera started recording frames (recording changes in
zoom that were not filmed) - shown in chart (i) of Fig. 15
and continued recording after the camera was stopped.
The algorithm for estimating the amount of blur was run
on the captured footage the results of which are shown in
chart (i) of the same figure and the data aligned using the
results from the algorithm and cross correlation with the
unsynchronised stream of data, the predicted alignment
shown in chart (i7) of Fig. 15. This predicted synchroni-
sation shift differs by 1 frame from the actual known value
of 908 frames.

4.3. Evaluating Algorithm Efficacy vs.
Present

Amount of Blur

Section 3.4 describes the method used for determining
the amount of blur present in a scene, and shown here are
the results for determining this metric (rp1,) along with
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the accuracy of the zoom estimates from Sec. 4.2.2. In or-
der to evaluate the amount of blur necessary in an image
to produce an accurate result, we calculate the amount of
blur present in each frame of the sequence of real images
using the method described in Sec. 3.4, where each frame
has undergone a change in focal length of varying mag-
nitude (including zero). This magnitude of blur is then
compared to the error between the estimate of scale change
and the ground truth values for scale change at that frame.
Figures 16,17 and 18 show the results of this analysis for
each of the real datasets presented in Sec. 4. We would
expect to see a higher proportion of over-estimates for the
magnitude of scale change in the image, particularly at a
low known scale change. The graphs for this analysis tend
to support this conclusion - however, in all three cases
there appears to be a reasonable amount of error when
the scale change is greater than zero - but the amount of
blur present in the image is not at its maximum. In the
graphs of figures 16,17 and 18, this can be seen as a re-
ported under-estimate towards the middle of the blur-ratio
scale (the x axis) where the red true scale-change line rises.
This result would further support the conclusion that as a
condition of a scale change being accurately estimated, it
must cause significant motion blur in the image. However,
it would appear that at the higher end of the scale change
the method clearly over-estimates the true scale change by
a considerable amount, and can sometimes under-report
it. This would appear to contradict the theory that larger
scale changes, resulting in larger amounts of blur present
in the image (reflected by the rise of r,) should result
in more accurate predictions using this method. As can
also be seen in the charts of Figs. 16- 18, the amount of
blur measured in the image using the method described
in Sec. 3.4 does not always rise consistently with the scale
change. This could be due to the fact that Guassian Blur
is isotropic wheras motion blur is not. An improvement
on this method for future work could be to design and use
a Point Spread Function more closely matched to that of
the expected motion blur in the place of the Gaussian blur
kernel.
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Using these results, it is proposed that a ‘confidence’
value of the estimated result can be predicted, in that for
a images with a range of values calculated for rpyy,, the



expected result from using the original method for scale
change from blur would be accurate to within a certain
percentage error. This value could then be used to in-
crease the accuracy of further results obtained from the
same scene, in a situation where a ground truth would not
be available. This would be especially useful in order to
be able to categorise frames in which the scale change is
likely to be zero, and hence saving the need to attempt to
calculate a transform estimate for this frame. Applying
the error metrics determined for the ‘Building’ scene to
further footage of this scene (with the camera at a slightly
different orientation) produces the results shown in Fig. 19
and Fig.20. These results are obtained by calculating the
blur ratio (rpy) from each frame and producing a ‘cor-
rected’ result for this frame by applying the error metric
for the range in which 7y, for this frame sits to the ini-
tial estimate. That is, if the frame is judged to have a
value for rp,, as 0.987, the corrected result will be the
estimated result scaled up by the error for this blur ratio
from Fig. 17. If a value for 7y, is encountered that is not
present within Fig. 17, then the value for scale change pro-
duced by the original algorithm is used. Similarly, if the
value for 71y, is below a threshold indicating that no scale
change is taking place, the corrected value is clamped to
0. We find that the cross correlation coefficient between
the naive, raw estimates and the actual values to be 0.865,
whereas the correlation coefficient between the corrected
set and true values to be slightly better at 0.879.
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Figure 19: Comparison between the ‘Naive’ Focal Length from Blur
Algorithm, and the ‘Blur Aware’ Method that multiplies results from
the Naive Method with Error Factors Determined in Section 4.3.
Ideally, the green line should be identical to the red, and closer to
this than the blue line. Frames that are determined to have no scale
change (a blur-ratio of less than 0.981) are capped at zero.

4.4. Effects of Depth of Field

Figure 14 shows the result of a real scene with a low
depth of field (the ‘Flower’ dataset). The focal distance in
this scene was set to approximately 1.5m, whereas in the
other real scenes used in this work, the focal distance is set
to infinity. It can immediately be seen in charts (i) and (i)
of Fig. 14 that the results are somewhat more inaccurate
than those from other images, with a tendency to greatly
overestimate the true extent of scale change during large
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changes in scale. Images with a low depth-of field would
typically have more blur in the frame regardless of motion
blur introduced by scale change during shutter opening.
This is something that Fig. 18 would confirm - as the zero,
or close to zero scale change extends further along the blur
ratio scale than in the results shown for other sequences.
In theory, as long as part of the image is in focus, and
this part has enough visual texture - such as sharp lines,
then these would be blurred by the scale change and not
from defocus - and could be used to calculate the scale
change. In practice however, it is often the case that the
in-focus part of the image would be at the centre of the
image. As discussed in Sec.3.1, it is likely that points
towards the centre of the image will be minimally scaled
- and therefore unlikely to give a reliable estimate for the
focal length change.

5. Limitations

The results obtained from using motion blur in this
work do suffer from several of the limitations discussed in
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the original Klein & Drummond paper. Notably, one of
the most significant problems encountered for the estima-
tion of parameters using blur is the need for a reasonable
amount of blur to be present in order to be successfully
detected. We have however presented a viable method to
overcome this limitation somewhat by using prior knowl-
edge of the error of the scale change estimate for a scene,
and the amount of blur present in an image in order to
better predict the scale change.

Another significant issue with the use of a single motion-
blurred frame to estimate parameters is the inability of the
system to cope with frames that have undergone more than
one transformation - e.g. a rotation alongside a change in
focal length. Another significant limitation of this work is
the inability of the system to cope with large movement
of objects in the scene. Our results suggest that a small
amount of movement, such as pedestrians in a scene or a
tree blowing in the wind will still allow for accurate results
to be obtained. However, experimentation has shown that
if the scene is completely obscured by movement, such as a
vehicle passing in front of the camera during a focal length
change, will cause the algorithm to fail.

Other limitations described in [6] for estimating pa-
rameters from blur are also present in this system, such as
the intolerance to strobing, over-saturation, the require-
ment for pure rotation and a constant centre of rotation.
However, when combined with the optical flow method de-
scribed in [17], it is possible to determine the ‘sign’ of the
rotation estimates. The method presented in [17], whilst
extremely accurate (as shown by fig. 10), does have a sig-
nificant limitation of requiring a large amount of resources
to compute - often necessitating frames to be re-scaled
prior to calculation. On average, for each blurred pair of
frames at at size of 640 x 480 pixels, it would take approx-
imately 30 seconds to compute an estimate for the optical
flow, whereas the methods from blur would compute a re-
sult in near real-time on the same hardware (=~ 30 m/s),
although this speed is highly dependent on the number of
edgel sites selected and also the size of the image. Re-
cent works in [2] and [3] have attempted to address this
limitation.

Another factor that may have an effect on the result
obtained for real footage would be the differences in blur
introduced into a frame by a camera’s rolling shutter (de-
tailed in [8]). All of the algorithms described and used
in this paper operate under the assumption that when
a frame is blurred due to motion, the blur is always as-
sumed to be constant across this frame. In a camera with
a rolling shutter, each line of the sensor in the camera is
sampled sequentially at different times. Therefore, during
fast movement, in a camera with a rolling shutter, this
assumption that all parts of the image will be blurred by
a constant amount cannot be true. Investigating the im-
pact and ways of minimising these effects in the algorithms
using blur would be an important next stage of research.

6. Conclusions

This paper has shown an earlier method for determin-
ing changes in focal length during a single motion blurred
frame, and has produced promising results from this method
that allows for the estimates to be calculated quickly. We
have also extended and combined two previous works in
order to estimate the shutter angle of a frame. We have
extended upon this work by presenting a new method to
work with the original as part of an extended system in
order to address previous limitations and enhance the ac-
curacy of this new algorithm. We have also tested our
methods on a new real data set and have been able to
demonstrate that this improved method gives more ac-
curate results, furthermore, we have examined how this
system might cope with an image sequence with a shallow
depth of field - and have uncovered potential limitations
that this may present. An area of further research would
be extending this system to handle frames which have been
blurred by more than one type of motion - such as in the
case of a translation and rotation, and work into this topic
is ongoing.
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